

Fault Tolerance and Robustness
in Concurrent Systems

4010-441

Principles of Concurrent Software Systems

2

Faults, errors, failures, and fault tolerance have
many different definitions.

What working definition should we use

for fault?

What does it mean to be fault-tolerant?

What are possible faults in the

Sleeping Barber system?

3

If not handled, faults can exhibit themselves in a
system in a number of different ways.

 Actions – the wrong actions are performed

 Timing – the right actions are performed but at

the wrong time

 Sequence – the right actions are performed but

in the wrong sequence

 Amount – the wrong number of actions are

performed

4

Fault-tolerance is a system level attribute that
needs to be designed in rather than tacked on.

In a broad sense, what are the two

major categories of activities that have

to go on to achieve fault-tolerance?

5

A simple software watchdog is a first detection
mechanism.

Software components are required to report a

heartbeat to their supervisor or to a central

monitor. The assumption is that as long as the

heartbeat is received the component is working.

How much does this tell us about the

operation of the component?

What could be an extension to the

simple watchdog concept that could

tell us more?

6

There are a number of responses that can be
taken once you find out that something is wrong.

What are some approaches that can be

used to deal with a broken component,

and an operation that may not have

been done correctly?

What concerns do you have to

consider?

7

First, we will establish some terminology.

 Cancellation
• Task level termination

• May or may not result in stopping threads

 Interruption
• Thread level termination

• Get a thread to terminate with or without

completion of the current operation

 Shutdown
• Application or service level termination

• Stop all tasks, and associated threads, with or

without completion

These definitions are not necessarily universally accepted.

8

If you are not using a framework with fault
handling, you will have to deal with it all yourself.

 A framework without fault handling may not give

you many options

 Define cancellation and interruption policies
• How to do it, when it is checked, what is done

9

It may look like Java gives you some tools at the
thread level, but not really.

 Everything will have to be cooperative

In the Thread class, take a look at:

public void interrupt()

 Interrupts this thread.
public static boolean interrupted()

 Tests whether the current thread has been interrupted.
public boolean isInterrupted()

 Tests whether this thread has been interrupted.

How do you use these to initiate an interruption, and to

process it? Why is this a cooperative approach?

10

You have some design decisions to make
regarding how to handle being interrupted.

 At the task level
• Finish current work or stop immediately

• Does it own the thread?
 Yes, end the thread?

 No, i.e. it’s running from a thread pool, let thread

manager handle it for the thread

– Preserve interrupted status

– Throw InterruptedException

 At the thread level
• Propagate interrupt if where it is detected does

not implement interruption policy

• Otherwise, implement interruption policy

11

There are other things that you need to consider
if you want to build a fault-tolerant system.

Exception in thread "main" java.lang.SomeException

 at com.example.myproject.Class1.method1(Class2.java:16)

 at com.example.myproject.Class2.method2(Class3.java:25)

 at com.example.myproject.TopClass.main(TopClass.java:14)

 What is the most common indication that your

program had a problem?

If it is operationally critical that the system keeps

running, tries to recover from errors, or at a minimum

does a graceful, failsafe shutdown, what do you do?

12

Shutdown of a service should take down all tasks
and threads that it owns.

 At the task level
• Let a running task complete?

• Let scheduled but not started tasks complete?

• Provide information about what work was not

finished.

 Once tasks are handled, interrupt threads in

pool

 ExecutorServices provide some support
• shutdown()

• shutdownNow()

• awaitTermination()

